
http://www.xerial.org/

 It’s a kind of tragedy…

2

I DECIDED TO
START A NEW
XML PROJECT

MASTERING XML IS
CRUCIAL TO OUR

COMPANY BECAUSE IT
IS COMPLETELY A
NEW DATA MODEL.

EVERYBODY MUST START
LEARNING SAX, DOM,
XPATH, XQUERY, DTD,

XML SCHEMA, RELAX NG…

 Benefits of using XML:

› XML is a portable text-data format

› Tree-structured XML can reduce redundancy

of relational data.

Company Employee Office

1 e1 NY

1 e2 NY

3
XML Data

Relational Data

<Company value=“1”>

<Emp value=“e1”>

<Office>NY</Office>

</Emp>

<Emp value=“e2”>

<Office>NY</Office>

</Emp>

</Company>

Co

Emp Emp

Office Office

e1 e2

NY NY

 Querying relational data translated into XML

 Q: Retrieve a node tuple (Co, Emp, Office)

from the XML data

› e.g. XPath, a path expression query

/Co/Emp/Office

4

Co Emp Office

1 e1 NY

1 e2 NY

XML Data

Relational Data

Co

Emp Emp

Office Office

e1 e2

NY NY

 Tree-representation of relational data is

not unique.

5

Relational Data

Co Emp Office

1 e1 NY

1 e2 NY

Co

Emp Emp

Office Office

e1 e2

NY NY

Office

Co Emp Emp

NY

e1 e2

Office

Emp Emp

Co

e1 e2

NY

 User must know the entire XML structures

to produce correct path queries.

6

/Office[Co]/Emp
/Co/Emp[Office]/Co/Office/Emp

[X] : twig node to test

Office

Co Emp Emp

NY

e1 e2

Co

Emp Emp

Office Office

e1 e2

NY NY

Office

Emp Emp

Co

e1 e2

NY

Office

Emp Emp

Co

e1 e2

NY

Co

Emp Emp

Office Office

e1 e2

NY NY

Office

Co Emp Emp

NY

e1 e2

Co Emp Office

1 e1 NY

1 e2 NY

 A key observation:

› Relation is simply embedded
in XML

7

Relational Data

8

WHY DO WE HAVE TO USE XPATH?

Office

Co Emp Emp

NY

e1 e2

Co

Emp Emp

Office Office

e1 e2

NY NY

Office

Emp Emp

Co

e1 e2

NY

Co Emp Office

1 e1 NY

1 e2 NY

 Query relations in XML
› with an SQL-like syntax

 SELECT Co, Emp, Office from (XML Data)

9

Result

 The query statement is stable for
variously structured XML data

Input XML Data

SQL over
XML!

 Convert an SQL query, SELECT A, B, C, into an
XML structure query.

› There can be many structural variations of (A, B, C)

10

B

A C

A

B

C

CA

B C A B

B

C

A

…..

 For N nodes, there exists NN-1 structural
variations.

 A node tuple (A, B, C) is an amoeba iff

one of the A, B and C is a common

ancestor of the others.

11

B

A C

A

B

C

CA

B C A B

B

C

A

…..

 Amoeba join retrieves all amoeba

structures in the XML data.

 Some amoeba structure may not form a
relation.
› Why this structure is not allowed?

 Because there are functional dependencies
(FD) implied in the XML structure.

12

Office

Emp

Company

Emp

Office

Emp Emp
ER-diagram (Data Model)

company

office

employee

1

M

1

N

13

Office

Emp

Company

Emp

Office

Emp Emp
ER-diagram (Data Model)

INVALID
STRUCTURE!

 FD: X -> Y (From a given X, Y is uniquely determined)

› employee-> office (Each employee belongs to an office)

› office -> company (Each office belongs to a company)

company

office

employee

1

M

1

N

 Relation in XML must have an amoeba structure

corresponding to each FD.

 The company has M offices, and each office has N

employees:

 # of (company, office, employee) tuples:

› When M = 100, N = 5 100 x (100 x 5) = 50,000

 While, # of correct answers is only M * N = 500

14

Office

Emp Emp

Company

Emp

Office

Emp Emp Emp

Office

Emp Emp Emp

company

office

employee

1

M

1

N

15

Office

Emp Emp

Company

Emp

Office

Emp Emp Emp

Office

Emp Emp Emp

 FDs: Emp -> Office, Office -> Company

 Bottom-up construction of query results

1. Amoeba Join (Employee, Office)

2. Amoeba Join (Office, Company)

 FD-aware amoeba join avoids invalid XML structures.

company

office

employee

1

M

1

N

 FD-aware amoeba join scales well

› For various sizes of XML data

16

 Relational query into XML query
› SELECT Co, Office, Emp

 (with FDs: Emp -> Office, Office -> Co)

Office

Co Emp

Co

Office

Emp

Emp

Co Office

Office

Emp

Co

…..
Co

Office Emp

17

 XML structures of interest are automatically
determined from a relation and functional
dependencies

 A type of FDs required to determine XML structures to

query is one-to-many (or one-to-one) relationships:

› FD: Emp -> Office

 Each employee belongs to an office

 An office may have several employees (one-to-many)

 We can observe these relationships by counting node

occurrences or directory from the ER-diagram.

18

Office

Emp

Company

Emp

Office

Emp Emp

company

office

employee

1

M

1

N

 First, consider
› XML := Relations + their annotations

 Steps
› 1. Detect relational part from XML data

› 2. Detect one-to-many(one) relationships (FDs)

› 3. Write relational queries
 SELECT Co, Emp, Office

19

company

employee

employee
office

office

c1

NY

NY

e2

e1

absent

annotation

 Note:

 It is also possible to

include annotations in

query statements.

 Relation in XML

› Defined using amoeba structure and FDs

 Relational-Style XML Query

› Retrieves relations in XML with a SQL-like
query syntax (SQL over XML)

› Allows structural variations of XML data

 Departure from path expression queries

› Target XML structures are automatically
determined.

20

 (see the paper for details)

 XML Algebra
› Based on relational-semantics

 selection, projection, etc.

 Keys for XML
› A key is a special-case of FDs

 Database integration

 Schema evolution

 Managing relational data enhanced with
XML syntax

 A lot more…
21

22

 Before going deep into the XML world,

Think in Relational-Style!!!

I DECIDED TO
START A NEW
XML PROJECT

MASTERING XML IS
CRUCIAL TO OUR

COMPANY. BUT XML
IS QUITE A FAMILIER
DATA MODEL TO US.

TAKE IT EASY!

 “It’s Just SQL”

 A large number of XML data and queries are still

relational.

